Dugong Census Begins

James Cook University scientists are in the air conducting critical Queensland-wide dugong population survey – counting dugongs along 2000 kilometres of coastline in under two months.

Like a census, the surveys are conducted over an intense period every five years to get a snapshot of dugongs and calves’ populations, from Cape York to Moreton Bay.

JCU TropWATER’s Dr Chris Cleguer said Australia is home to the largest dugong population in the world, and the surveys are critical for monitoring trends in abundance and distribution.

“These aerial surveys have been conducted for more than 30 years and are essential in not only estimating the current dugong population size but also mapping where dugongs are more or less abundant,” he said.

“There are concerns about the decline in dugongs across the urban coast of the Great Barrier Reef – this year’s surveys will give us the opportunity to understand the extent of this.”

Hervey Bay to the south of the Great Barrier Reef, a known hot spot for dugongs, is an area of concern following a major loss of seagrass habitat earlier this year. The seagrass loss resulted from two flood events, which smothered the seagrass and destroyed the dugongs’ main food source.

“The surveys will help us to determine how many dugongs currently are in Hervey Bay and the Great Sandy Strait as well as understanding their large-scale movements,” he said.

“It is possible the dugongs have moved in search of seagrass to other nearby key habitats such as Gladstone to the north or Moreton Bay to the south.”

Dr Cleguer said, for the first time in Queensland, the aerial surveys will also use cameras attached to one of the legs of the aircraft to capture thousands of images of the water surface.

“These large-scale aerial surveys usually rely solely on highly trained observers to count dugongs from the sky,” Dr Cleguer said.

“But our collaborative research group is transitioning to using imagery survey and artificial intelligence to track and monitor dugongs in the future – saving time, money and providing enhanced data.”

The Great Barrier Reef dugong population aerial surveys are one of the critical Reef monitoring projects funded by the partnership between the Australian Government’s Reef Trust and the Great Barrier Reef Foundation (Cape York to Bundaberg). The surveys in Queensland’s southern bays, Hervey Bay and Moreton Bay, are also funded by the Department of Climate Change, Energy, the Environment and Water.

Great Barrier Reef Foundation Managing Director Anna Marsden said incorporating new technologies like AI is key to accelerating impact in tracking the health of the Reef and its animals.

“Dugongs are not only a vulnerable marine species we must protect, they’re also a priority indicator species for climate change and ecosystem health, with dugongs’ in-shore seagrass nurseries and feeding grounds highly susceptible to climate change impacts,” Ms Marsden said.

“By using new technologies and supporting efforts to accelerate and advance the aerial dugong surveys with our research partners from JCU, we will be able to give Reef managers and researchers access to the best possible information to proactively manage and protect the Reef and its marine life.”

The research team will survey from the Cairns region south to Moreton Bay over the next two months, and further surveys are planned for Cooktown to Cape York in 2023.


Bringing back bushfoods: Australia’s landscape mapped to boost bush tucker

Growing native bushfoods could reverse environmental degradation and offer better food security. But how do we get bushfoods in the agricultural sector in a market saturated by modern crops?

New research from James Cook University’s TropWATER has mapped Australia’s entire landscape to uncover the best places to grow more than 170 bushfoods.

The study found the Great Barrier Reef catchment area to be a hotspot for a wide range of bushfoods including those most in-demand commercially, including lemon myrtle, native plums and bush tomatoes.

Author Dr Adam Canning said identifying what native crops can grow where was an important first step in scoping potential native food industries to support farmers.

“Native foods in Australia have a rich history and there is a growing demand to get bushfoods in the supermarket, yet the commercial production of native foods remains small,” he said.

“This research maps Australia’s entire landscape to identify exactly what bushfoods can be grown where – and that’s a big step toward boosting Australia’s native food industry.”

Dr Canning said transitioning the agricultural landscape to include a diversity of native bushfoods would help reverse environmental degradation.

“Modern non-native crops such as sugarcane and wheat need intensive cultivation, irrigation, herbicides, and pesticides, and are grown as monocultures,” he said.

“This comes at a cost to the environment, and we’ve seen this happen along the Great Barrier Reef catchment.

“Diversifying modern agricultural systems to include native plants would help restore balance in coastal ecosystems through reducing runoff, improving soil health and supporting biodiversity.”

Coastal areas of Queensland’s wet tropics, south-east Queensland, New South Wales, and Victoria were predicted to support the greatest diversity of native food and forage species.

“These areas are the most agriculturally intensive areas with degraded environments, but they also have the greatest potential for regenerative agricultural practices,” he said.

“Farmers could start small by trialling intercropping, and slowly expand as knowledge and industries grow.”

To further incentivise these practices, more financial benefit schemes need to be developed to reward farmers for providing ecosystem services, such as carbon sequestration and reduced pollution.

The research also indicates a significant opportunity for Indigenous-led business models within the emerging bush foods sector. However, steps would need to be taken to ensure Indigenous knowledge and intellectual property are protected.

The research paper Rediscovering wild food to diversify production across Australia’s agricultural landscapes was published in Frontiers in Sustainable Food Systems.


Women Warriors of the Torres Strait set sail for the Great Reef Census  

The Women Warriors of the Torres Strait – an all-female crew of Traditional Owners, rangers and scientists led by the Torres Strait Regional Authority (TSRA) Sea Team and James Cook University – has set sail as part of the Great Reef Census to survey the northernmost section in the Torres Strait, northern Australia.

The five-day voyage to Mer (Murray Island) by the Women Warriors of the Torres Strait is the first time the Great Reef Census – led by Citizens of the Great Barrier Reef – has ventured beyond Cape York.

TSRA Senior Natural Resource Management Officer and Marine Biologist Madeina David, 24, said the trip served as ‘ethical science’ in the Torres Strait, with researchers and Traditional Owners working together to monitor the Great Barrier Reef, collect data and share findings with island communities to support local decision making.

“Our voyage sets a new course for science to value, respect and incorporate the traditional ecological knowledge of custodians who have cared for land and sea for centuries,” Ms David said.

“We will connect ancient knowledge and modern science to assess the condition of the northern Great Barrier Reef, including water temperatures, coral conditions and even explore the potential for a future turtle sanctuary.”

TSRA Sea Team Manager Moni Carlisle said checking conditions, including marine habitat at Mer, would provide critical insight into the future of the Great Barrier Reef.

“The Torres Strait is the northern tip of the Great Barrier Reef and known as the seagrass capital of the world. As home to globally important marine migratory species, including dugong and sea turtles, it is proving to be vital to the future of the Great Barrier Reef for both corals and sanctuary for species recovery,” she said.

JCU TropWATER’s Dr Katie Chartrand said the expedition was a valuable opportunity to work in partnership with Traditional Owners and rangers to paint a clearer picture of this hotspot of reef biodiversity.

“Using the Great Reef Census, we can rapidly collect thousands of reconnaissance images of remote reefs that have rarely or never before been formally surveyed,” she said.

Dr Chartrand said concerns have been raised of potential outbreaks of crown-of-thorns starfish, flagging the importance to survey this pristine region of the Great Barrier Reef.

“This Census gives TSRA and the local Meriam community a snapshot of the health of the reef habitats – and that’s a powerful strategy in taking steps to protect these extraordinary reefs.”

The Women Warriors of the Torres Strait Great Reef Census voyage is funded by the TSRA and supported by partners including the Citizens of the Great Barrier Reef and James Cook University.

Spearfishing restrictions boost fish stocks

Restricting spearfishing in some ‘yellow zones’ in the Great Barrier Reef Marine Park has doubled the abundance of coral trout, according to new research led by James Cook University scientists.

The study published in Biological Conservation focused on reefs around the Capricorn Bunkers, offshore from Gladstone, looking at the abundance of targeted fish species in partially protected Marine Park Zones known as ‘yellow zones’.

Researchers compared yellow zones that allow spearfishing to ‘special management area’ yellow zones that prohibit spearfishing.

JCU’s TropWATER scientist Dr April Hall said while spearfishing can be an ecologically sustainable activity with minimal bycatch, restricting the activity via designated spearing-free management zones can have conservation benefits at a regional scale.

“What we found was in yellow zones that excluded spearfishing, the numbers of target species such as coral trout were significantly higher compared to fishing zones that allow spearfishing,” she said.

“These restricted yellow zones also rivalled the abundance in nearby protected no-take green zones.

“Regardless of the effects of spearfishing, both kinds of yellow zones still support a greater abundance of coral trout compared to nearby blue zones, where fishing is less restricted.”

Dr Hall said while this study showed the conservation benefits of prohibiting spearfishing, it’s not necessarily the case across the entire Great Barrier Reef.

“We’ve compared other yellow zones in different parts of the Great Barrier Reef and the outcome varies, most likely due to differences in the popularity of spearfishing.”

JCU’s Professor Mike Kingsford said no-take marine reserves were one of the most effective conservation measures to restore the abundance of fish.

“Fully protected green zones in the area support the most significant number of large coral trout,” he said.

“This is a really important protection measure because large coral trout change sex from female to male, and this helps to maintain healthy breeding populations.”

Co-author, Great Barrier Reef Marine Park Authority’s Director Darren Cameron said the research demonstrated that yellow zones were an important marine park management tool providing a balance between conservation and sustainable fishing activities.

“Healthy fish populations in both yellow zones and protected no-take green zones produce baby fish, many of which grow up and are subsequently caught throughout fished areas. These zones improve fishing, with more fish also importantly contributing to the health and resilience of the entire Great Barrier Reef,” he said.

Gulf mangrove dieback discovery

Breakthrough research by James Cook University scientists has solved the mystery of the catastrophic death of 40 million mangrove trees around the Gulf of Carpentaria in 2016 – and the discovery could help scientists predict, and possibly prevent, future events.

The latest research reveals that the devastating mass death of tidal mangrove forests was a result of an unusually low sea-level due to large-scale swings in El Nino – Southern Oscillation events.

Lead author Dr Norm Duke from JCU’s TropWATER Research Centre said the mangroves had not recovered seven years on, making the mangrove dieback event an ongoing coastal catastrophe.

“The key factor responsible for the mass dieback appears to have been the sudden 40-centimetre drop in sea level that lasted for about six months, coinciding with no rainfall, killing vast areas of mangroves,” he said.

“Essentially, the trees died of thirst.”

The study shows that strong El Niño events – often associated with coral bleaching on the Great Barrier Reef – are also a threat to vital mangrove ecosystems.

Nearly 40 million mangrove trees died along 2000 kilometres of coastline in northern Australia’s remote Gulf region, releasing nearly one million tonnes of carbon. More than 76 km2 of mangroves were lost, making this the worst incidence of climate-related mass tree dieback that has ever occurred globally.

“Recovery has been repeatedly stymied by other climate-driven events including severe cyclones and flooding,” Dr Duke said.

Author assisting with data analysis and JCU TropWATER Researcher Dr Adam Canning said the study’s evidence for sea-level drop being the cause was found in the discovery of an earlier mass dieback in 1982, observed in satellite imagery.

“The 1982 dieback also coincided with an unusually extreme drop in sea level during another very severe El Niño event. We know from satellite data that the mangroves took at least 15 years to recover from that dieback,” he said.

“Now they are caught in a vicious collapse and recovery cycle because of repeated pressure from climate change – the question remains when or if they will recover.”

Enhancing the resilience of these ecosystems is possible with targeted action.

Co-author and wetlands researcher at Earthwatch Australia, Jock Mackenzie, said “To help mangrove ecosystems respond to environmental impacts such as climate change, we must address the localised human impacts that degrade mangrove habitats including pollution, altered hydrology, feral animals, weeds, and improper fire management. These impacts impede the natural ability of mangroves to adapt to climate change.”

“We encourage community groups, Indigenous custodians and catchment management agencies to continue to monitor mangrove shorelines through a combination of satellite monitoring and the MangroveWatch citizen science program, to help identify and prioritise targeted local mangrove management and threat reduction.”

Satellite imagery could also be used to help monitor the recovery of mangroves in remote areas and identify key areas under pressure. It may even be possible to predict future events, which could help prepare for innovative rescue efforts that may include reducing water stress during El Niño events via targeted irrigation.

Dr Duke said mangroves are vital to the ecology and stability of tropical and sub-tropical coastlines and their protection is critical.

“They provide essential habitat for many species and can hold substantially more carbon than tropical forests within the same area,” he said.

“These extraordinary trees are normally environmentally resilient, being able to grow in seawater, intertidal zones and on coastal salt flats. They are also essential for preventing or reducing shoreline erosion and retreat.”

The dieback’s exact cause has been revealed after a four-year research partnership between James Cook University, Charles Darwin University, and Carpentaria Land Council Aboriginal Corporation Indigenous Rangers in the Gulf, funded by the Australian Government’s National Environmental Science Program and the Northern Territory Government.

The Gulf mangrove dieback research project and team was funded by the Australian Government’s National Environmental Science Program (NESP), through both its Tropical Water Quality Hub and Northern Australia Environmental Resources Hub.

Scholarship gives marine science students real world opportunity

Two outstanding James Cook University (JCU) marine science students have been awarded Bachelor of Science scholarships – equipping them with unique real-world experience on the Great Barrier Reef under the guidance of leading marine researchers.

Jordan Wells and Indus Fisher will receive financial support throughout each year of their degree, in addition to the chance to work alongside researchers and port industry managers, thanks to a partnership between JCU and North Queensland Bulk Ports Corporation (NQBP).

JCU’s Centre for Tropical Water and Aquatic Ecosystem Research (TropWATER) Principal Researcher Dr Nathan Waltham said the scholarship would be invaluable for the budding marine scientists.

“Every year Jordan and Indus will have financial support, plus get hands-on experience in understanding how environmental science can tackle real marine industry issues,” he said.

“Marine science can be a very competitive field and this scholarship gives these promising students valuable real-world experiences, beyond just the classroom.”

Indus Fisher, who relocated to Townsville from Mackay, said he had grown up in the heart of the Great Barrier Reef and loved the marine environment from a young age.

“With a hope to help protect this beautiful ecosystem, I couldn’t think of a better place to learn the knowledge and skills to do so than at the world’s leading university in marine science,” he said.

“Thanks to the generosity of North Queensland Bulk Ports and JCU TropWATER, this financial burden has been greatly reduced, allowing me to focus more fully on my studies and achieve the very best possible results I can.

“The real opportunity lies in the industry connections, placement possibilities, and real-world experience this fantastic partnership makes available to us.”

The two students will join last year’s scholarship recipient, Amy Cantrill, and intern students who will complete placement in the environmental team at NQBP. Together, the student programs are building the next generation of marine scientists to be job ready.

NQBP CEO Nicolas Fertin said the port authority is proud to provide university students real-world experience in port environmental management.

“With JCU, we have created one of Australia’s most comprehensive port marine ambient monitoring programs while training the next generation of industry and job-ready science graduates,” Mr Fertin said.

“The marine environment is central in our everyday planning and port operations. Informed environmental management ensures trade keeps flowing to service the Queensland economy.”

JCU offers the world’s best marine and freshwater biology degrees, and NQBP is the only port authority in the world with three priority ports, of Hay Point, Mackay and Abbot Point, located on the shores of a World Heritage Area.

The scholarship program is part of NQBP’s broader five-year partnership with JCU, where researchers monitor the local marine environment surrounding four ports.

Jordan Wells (left) and Indus Fisher (right) have been awarded Bachelor of Science scholarships for 2022, joining 2021 recipient Amy Cantrill (centre).

Identifying sediments in the Bowen, Broken and Bogie catchments

Graziers and scientists are working together to understand how, when and where sediment moves from the land into the Bowen, Broken and Bogie catchments – building a more accurate understanding of the local water quality.

Over the past four wet seasons, JCU TropWATER scientists Zoe Bainbridge and Steve Lewis have worked with local graziers and NQ Dry Tropics’ Landholders Driving Change project team to run the LDC Community Water Quality Monitoring Group, collecting and analysing water samples across nine river and creek sites during high rainfall events.

The program is helping improve scientists’ and landholders’ understanding of the loss of soil, and the nutrients attached to this soil, that travel from the land into waterways during high rainfall.

“The aim is to help identify the main source areas of sediment within the catchment, and work with landholders to prevent fine sediment flowing out to the Great Barrier Reef,” researcher Zoe Bainbridge said.

Latest results: The 2021-22 wet season

Despite limited rainfall in the Collinsville region this wet season, more than 50 water samples were collected by graziers during local streamflow events and delivered to TropWATER to be analysed for phosphorous, nitrogen and sediment content.

Early results show the Bowen River sub-catchment is an area highly susceptible to soil loss, most likely due to soil types prone to erosion.

The full report will be available later this year.

Big picture: how the data will be used

The water quality data collected from this project is paired with historical water quality and sediment source tracing data, giving an improved understanding of the sediment sources and transport processes within these catchments.

These valuable datasets are being used by the Paddock to Reef Program’s catchment modellers to improve the spatial model representation of water quality across the Bowen Broken and Bogie catchments, including how this relates to land management changes within the catchment.

LDC Community Water Quality Monitoring Project is a collaborative between NQ Dry Tropics’ Landholders Driving Change and JCU TropWATER Centre, funded by the partnership between the Australian Government’s Reef Trust and the Great Barrier Reef Foundation, and the Office of the Great Barrier Reef.

Scientists, Traditional Owners and conservationists come together in ‘The Reef Cooperative’

To mark World Oceans Day, Cotton On Foundation, the philanthropic arm of the Cotton On Group, has committed $2 million to co-launch a world-first conservation project, ‘The Reef Cooperative’.

The new initiative, coordinated by Citizens of the Great Barrier Reef, brings together Traditional Owners Yirrganydji Land and Sea Rangers, James Cook University reef scientists, reef restoration experts Mars Sustainable Solutions and leading tourism operator GBR Biology.

Through the collaborative partnership, conservation efforts will be scaled up on the Great Barrier Reef, with Hastings Reef on Yirrganydji Sea Country, near Cairns, chosen as the first restoration site.

Seed and grow – JCU leads coral larvae project

Under The Reef Cooperative, James Cook University TropWATER Centre will lead the Coral Larval delivery program to help degraded reefs recover and replenish by seeding and growing new corals.

The project will see the delivery of 30 million coral larvae over three years on Hastings Reef, and other reefs, during the annual Great Barrier Reef mass coral spawning event.

Project lead JCU TropWATER’s Dr Katie Chartrand said the project would help to spur coral growth and boost local reef recovery.

“Climate change has resulted in more frequent marine heatwaves and cyclone damage combined with other impacts like crown-of-thorns starfish outbreaks – these repeated events are making it harder for damaged reefs to recover,” she said.

“This coral larval project is all about giving struggling reefs a better chance at recovering by boosting the number of available coral larvae for natural settlement.”

The project involves collecting coral spawn during the Reef’s annual spawning event and relocating the larvae to damaged reefs.

“The Reef Cooperative is an example of science, traditional owners, and industry partners delivering ground-breaking programs that could make a big difference to the recovery and resilience at key sites on the Great Barrier Reef,” Dr Chartrand said.

“This conservational model is designed to build resilience to damaged areas using a scientific approach while enabling greater capacity for traditional owners and tourism partners to share their perspectives and knowledge.”

The Reef Cooperative – projects for the next three years 

The three-year funding commitment will see the launch of The Reef Cooperative to deliver a major conservation program at degraded reefs with multiple projects interwoven to have greater collective impact.

In addition to JCU’s coral larvae project, 700 MARRS reef stars will be installed to aid in reef recovery, starting with the 250 at Hastings Reef. These stars are a ground-breaking restoration technology that will provide a stable base for coral fragments to grow on damaged sections of the reef.

Hastings Reef and other subsequent sites chosen as part of The Reef Cooperative will be maintained by Yirrganydji Sea Rangers or other Traditional Owners of their Sea Country. The rangers and Traditional Owners will engage tourists in reef conservation and protection with weekly tourism visits through Dreamtime Dive & Snorkel.

The Great Reef Census – a Citizens of the Great Barrier Reef initiative – will also be scaled up to survey the far reaches of the 2,300km Great Barrier Reef, both in-water and recruiting citizen scientists worldwide to help analyse the tens of thousands of Census images.

Andy Ridley, CEO of Citizens of the Great Barrier Reef said the scale of the $2 million investment from Cotton on Foundation for The Reef Cooperative allows for a rapid delivery of tangible conservation actions.

“With collaboration at its heart, The Reef Cooperative is designed to deliver highly scalable practical conservation outcomes on reefs across the 2,300km Great Barrier Reef and beyond.”

Tim Diamond, GM of Cotton On Foundation said the commitment, supported by a unique fundraising model in partnership with customers, will support an incredible collective of minds and organisations working directly on the Great Barrier Reef to address the issue of coral reef loss in the face of climate change and severe weather events.

“The conservation model is unique and through its focus on community, innovation, and knowledge sharing it has proven to transform one of the great environmental challenges in our own backyard. At Cotton On Foundation, we are proud to support Citizens of the Great Barrier Reef and this game-changing initiative.”

New partnership unlocks largest blue carbon restoration project in Queensland’s Great Barrier Reef catchment

Coles and the Great Barrier Reef Foundation have announced a 10-year, $10 million partnership to help strengthen the regeneration and resilience of the Great Barrier Reef.

Under the new partnership, JCU TropWATER Centre is leading a major coastal habitat restoration project – and it will be the largest blue carbon project to date in Queensland’s Great Barrier Reef catchment.

Led by Dr Nathan Waltham, TropWATER’s Principal Research Scientist, the project will work with farmers to reinstate significant coastal wetlands in the Great Barrier Reef catchment, restoring coastal habitats and serving as highly effective carbon sinks.

“The funding provides us the first opportunity to undertake large scale restoration in the Great Barrier Reef catchments, delivering outcomes for the reef, climate, biodiversity and water quality,” he said.

“Wide-scale loss of coastal wetlands and changing climate conditions means that we need to roll out major projects like this, and this funding is a start in helping us deliver ecosystem service returns for landholders, Traditional Owners of Country, industry and government agencies.”

Through the partnership, Coles will dedicate funds towards a number of innovative projects based on ‘blue carbon’ – the process of capturing and storing carbon in oceanic or coastal ecosystems such as mangroves, tidal marshes and seagrasses.

Thinus Keeve, Coles Chief Sustainability, Property and Export Officer said: “Coles is already making great strides in our Together to Zero emissions ambition and our partnership with the Great Barrier Reef Foundation represents the latest phase in our commitment to show leadership on sustainability.”

“Our investment in the regeneration and revegetation of coastal ecosystems will help build the resilience of the Reef and deliver projects that can make a difference at a meaningful scale,” he said.

Chief Scientist of the Great Barrier Reef Foundation Professor Ove Hoegh-Guldberg said: “We need the best science to develop bold, innovative ideas to protect coral reef habitats and slow the impacts of climate change, which is the biggest threat to the survival of the Great Barrier Reef.

“In addition to tackling the root cause of climate change, we must make reefs more resilient to the impacts of climate change that are already locked into the system.

“Coles’ partnership in blue carbon projects with the Great Barrier Reef Foundation is a prime example of the way we all can be working together to help the Reef and all its living diversity now and into the future. It is terrific to see one of Australia’s corporate greats generously engaging to solve one of the greatest challenges facing Australia.”

Coles’ investment will commence with two pilot projects designed to unlock the Reef’s blue carbon potential, increase biodiversity, accelerate scientific research and support communities along the Reef.

In addition to Dr Waltham’s wetland restoration project, the partnership is also developing the first large-scale seagrass nursery in partnership with leading seagrass researchers and Traditional Owners of the Reef.

Rangers take the lead as ‘eyes and ears’ of the Northern Great Barrier Reef

Rangers take the lead as ‘eyes and ears’ of the Northern Great Barrier Reef

In the lead up to National Reconciliation Week (27 May – 3 June), James Cook University’s scientists are this week upskilling Torres Strait rangers to be the eyes and ears in protecting seagrass meadows in the northernmost part of the Great Barrier Reef.

In one of the country’s most comprehensive seagrass monitoring programs, Torres Strait Regional Authority (TSRA) and JCU TropWATER Centre are together training rangers from remote island communities to monitor seagrass meadows in the nation’s far north.

TSRA Acting Chairperson Horace Baira said Green Island off Cairns – home to vital dugong and turtle seagrass habitat – provided the perfect training ground.

“Combining ancient knowledge and modern science is critical for conservation as we face climate impacts across the Torres Strait,” Mr Baira said.

“The ocean is the lifeblood of the Torres Strait and bringing together all fields of expertise will help protect this precious natural resource for current and future generations.”

JCU’s TropWATER Centre seagrass scientist Dr Alex Carter said the rangers were critical in regional assessments of seagrass condition in Torres Strait.

“This training week builds on a 15-year partnership that goes from strength to strength as it continues to grow with new monitoring locations added to the network,” she said.

“Traditional Owners are the eyes and ears on the ground and this ranger-led program provides the first warnings of any declines or changes in seagrass health.

“This allows for quick management responses and targeted research projects to protect these important seagrass meadows.”

The four-day workshop, delivered by JCU scientists and TSRA, includes in-field training, species identification, and an opportunity to discuss results from recent research and monitoring projects to plan for future opportunities.

24-year-old Iama (Yam) Island Traditional Owner and TSRA Marine Biologist Madeina David said the training would support reef monitoring and results.

“Most people are unaware the Torres Strait is the most northern part of the Great Barrier Reef, home to the world’s largest dugong population and significant numbers of green turtles,” Ms David said.

“Working in partnership to value both traditional and western science gives our marine life and ocean ecosystems the best chance to survive and thrive.”

Meriam Traditional Owner and TSRA Senior Ranger Supervisor Aaron Bon said the training would build the capacity and knowledge of local Torres Strait Islander and Aboriginal rangers and boost conservation efforts across the Torres Strait.

“It will also assist Rangers and Traditional Owners to keep an eye on our reefs and seagrass meadows in the region and in doing so, we help protect some of the world’s most pristine and rich sea country,” Mr Bon said.

“Rangers will bring back skills, share learnings to support our important work on land and sea country in remote island communities and help us to make informed decisions around where we need to target our conservation efforts.”

TSRA employs up to 60 land and sea rangers across 14 Torres Strait communities to support employment opportunities for local people to combine traditional knowledge with conservation training to protect and manage land, sea and culture.


Find out more Email Us Phone 07 4781 4073