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Executive Summary 
 

This report presents the development and evaluation of a Subtidal Seagrass Detector (the Detector). 

Deep learning models were used to detect most forms of seagrass occurring in the northeast 

Australian seascape from underwater images and classify them based on how much seagrass was 

present. Images were collected by scientists and trained citizen scientists undertaking routine 

monitoring using drop-cameras mounted over a 50 x 50 cm quadrat. The Detector is composed of 

three separate models able to perform the specific tasks of: detecting the presence of seagrass 

(Model #1); classify the seagrass present into three broad cover classes (low, medium, high) (Model 

#2); and classify the substrate or image complexity (simple of complex) (Model #3). We were able to 

successfully train the three models to achieve high level accuracies with 97%, 80.7% and 97.9%, 

respectively. With the ability to further refine and train these models with newly acquired images 

from different location and from different sources (e.g. ROV), we are confident that our ability to 

detect seagrass will improve over time. With this tool we will be able rapidly assess a large number 

of images collected by various contributors, such as citizen scientists, QPWS Rangers and Indigenous 

rangers that frequently access the Reef and seagrass habitats of northern Australia. This would 

provide invaluable insights about the extent and condition of subtidal seagrass in currently data-

poor areas. 
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1. Introduction 
Seagrasses are one of the most valuable marine ecosystems on the planet, and an integral component 

of the northeast Australian seascape that includes: the Great Barrier Reef, Torres Strait, and the Great 

Sandy Marine Park. Seagrass ecosystems in these marine domains are ecologically, socially and 

culturally connected and contain values of national and international significance (Johnson et al., 

2018). 

The Great Barrier Reef (the Reef) is the most extensive reef system in the world, in which seagrass is 

estimated to cover approximately 35,679 km2 (McKenzie et al., 2022b). Over 90% of the Reef’s 

seagrass meadows occur in subtidal waters, with the deepest record to 76 m (Carter et al., 2021b), 

although most field surveys are in depths shallower than 15 m (McKenzie et al., 2022b). There are 15 

seagrass species reported within the Reef, occurring in estuaries, coastal, reef and deep water habitats 

and forming meadows comprised of different mixes of species (Carter et al., 2021b). Seagrass 

ecosystems of the Reef support a range of goods and benefits to species of conservation interest and 

society. The seagrass habitats of Torres Strait to the north are also of national significance due to their 

large extent, diversity and the vital role they play to ecology and the cultural economy of the region 

(Carter et al., 2021a). Similarly, the seagrasses within the Great Sandy Marine Park to the south 

support internationally important wetlands, highly valued fisheries and the extensive subtidal 

meadows in Hervey Bay are critical for marine turtles and the second largest dugong population in 

eastern Australia (Preen et al., 1995; McKenzie et al., 2000). Catchment and coastal development, 

climate change and extreme weather events threaten seagrass ecosystem resilience and drive 

periodic decline. Maintaining up-to-date information on the distribution and condition of seagrass 

meadows is needed to protect and restore seagrass ecosystems. 

A wide range of methods have been applied to assess and monitor changes in subtidal seagrass, 

including free-diving, SCUBA diving, towed camera, towed sled, grabs or drop–camera (McKenzie et 

al., 2022b). Most of these techniques rely on trained scientists to visually confirm, quantify and 

identify the presence of seagrass in situ. This labour-intensive work, combined with the tremendously 

large area of the Reef, makes assessing the state (extent and condition) of subtidal seagrass 

prohibitively time consuming and expensive. 

In recent years, the use of digital cameras and autonomous underwater vehicles (AUVs) has led to an 

exponential increase in availability of underwater imagery. When this imagery is geotagged or 

geolocated, it provides an invaluable resource for spatial assessments, and when collected by a range 

of providers and the wider community who are accessing the Reef for a range of other activities 

(tourism, Reef management), is highly cost effective. For example, the Queensland Parks and Wildlife 

Service uses drop cameras to collect photoquadrats of the benthos within seagrass habitats for 

processing by and inclusion in the Inshore Seagrass component of the GBR Marine Monitoring 

Program (MMP). Recent projects such as The Great Reef Census aim at tapping into the power of 

citizen science to collect images and provide new sources of information about the Reef. A similar 

approach could be applied to seagrass. This digital data can be analysed automatically if the workflows 

are in place to deal with structured big data streams. 

Deep–learning technology provides potentially unprecedented opportunities to increase efficiency for 

the analyses of underwater images. Deep–learning models are being used for counting fish (Sheaves 

et al., 2020), identifying species of plankton (Schröder et al., 2020) and estimating coral cover (Beijbom 

et al., 2015). Few studies showed the potential of its application for coverage estimation (Reus et al., 

2018) as well as detection and classification (Moniruzzaman et al., 2019; Raine et al., 2020). While 

these showed interesting technical methods, they were not developed for operation applications. An 
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operational model that can detect seagrass within the Reef will expand the ability to rapidly assess 

and easily provide data critical for large scale assessments. In particular, a model that can detect 

seagrass presence even with diverse physical appearances among the 15 species in the Reef, and in a 

range of habitat types with variable benthic substrates. As seagrass can also be very sparse in the Reef, 

with an historic baseline of 22.6 ±1.2% cover (McKenzie et al., 2015) and subtidal percent covers 

frequently less than 10%, a detector is needed to cope with such circumstances. 

In this report we will detail the development of a Subtidal Seagrass Detector (the Detector) using a 

deep neural network (DNN) to analyse underwater images to detect and classify seagrasses. This will 

enable rapid processing of many images. It will form an integral step in workflow from image capture 

to provision of rapidly and easily accessed information. Up to date information on the extent and 

condition of seagrass is required for marine spatial planning and for the implementation of other 

management responses to protect Reef ecosystems.  
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2. Methods 

2.1. Dataset 
Our subtidal image dataset was composed of 7440 photoquadrats collected by drop-camera and 

SCUBA divers as part as the Great Barrier Reef Marine Monitoring Program (MMP) (McKenzie et al., 

2022a), the Seagrass-Watch Global Seagrass Observing Network (Seagrass-Watch, 2022) and the 

Torres Strait Ranger Subtidal Monitoring Program (Carter et al., 2021a). Images were captured 

between 2014 and 2021 from 28 sites across 18 unique locations within the coastal and reef subtidal 

habitats from Torres Strait to Hervey Bay (Figure 1, Table 1). Images were annotated by assessing: (1) 

the percent cover of seagrass (McKenzie et al., 2003), (2) the seagrass morphology of the dominant 

species based on largest percent cover (straplike, oval–shaped or fernlike), (3) percent cover of algae, 

(4) substrate complexity (simple or complex), and (5) quality of the photo (0=photo unusable, 1=photo 

clear with more than 90% of quadrat in the frame, 2=photo with bad visibility with more than 90% of 

quadrat in the frame, 3= photo clear with quadrat partially not visible, 4= photo oblique with quadrat 

not totally on the bottom). Only photos with a rating of 1 (5782 in total) were retained to ensure 

optimal performance. All images were cropped to the outer boundary of the quadrat and standardised 

to a 1024  1024 pixel size. 

 

 

Figure 1. Map showing the location and number of images used for the Subtidal Seagrass Detector in 
the Torres Strait, the Great Barrier Reef World Heritage Area and Great Sandy Marine Park. 
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2.2. Detector models 

2.2.1. Seagrass presence detector (Model #1) 
We defined seagrass presence as an area of benthos spatially dominated by seagrass, which we 

classed as ≥3% cover (sensu Mount et al., 2007). Images with seagrass cover less than 3% were 

excluded, resulting in the removal of an additional 819 images from the analysis. This maximised the 

power of detection to levels where seagrass was clearly visible. There were 1727 images with seagrass 

absent and 3236 with seagrass present. To ensure a balance dataset of the two classes 1727 images 

were chosen at random out of the 3236 while ensuring the inclusion of all images from the minor 

seagrass morphology classes oval-shaped (522) and fernlike (165). The remaining images with seagrass 

present (1509) were retained for further testing. 

2.2.2. Seagrass cover category classifier (Model #2) 
Cover categories were first established based on four cover quantiles, which were equivalent to 

seagrass percent cover categories of ≥3 <9%, ≥9 <15%, ≥15 <30% and ≥30%. However, the resulting 

model did not adequately distinguish between the two middle categories (less than 60% accuracy). 

Therefore, those two classes were merged resulting in three main classes used in Model #2: (1) low 

seagrass cover (≥3 <10%), (2) medium seagrass cover (≥10 <30%), and (3) high seagrass cover (≥30%) 

(Figure 2). The classes were somewhat unbalanced with 1082, 1509 and 644 images respectively. 

However, a few more images in the medium class can be beneficial as it can help improve accuracy 

for that class which is the most commonly occurring at MMP sites (long term mean of 14% seagrass 

cover for coastal and reef subtidal sites). 

 

Figure 2. Distribution of seagrass percent cover in the image dataset used for Model #2. 
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2.2.3. Substrate complexity classifier (Model #3) 
The substrate complexity classifier was applied to all images without any seagrass present. Those 

images were labelled either as ‘simple substrate’ or as ‘complex substrate’. The ‘simple’ category was 

assigned to clear images with mostly sandy bottoms while the ‘complex’ category was assigned to 

images that met at least one of the following conditions: 

 had unconsolidated substrates, such as rock, live coral or coral rubble 

 had a visually significant amount of macroalgae 

 where labelling was difficult (e.g. poor visibility, small seagrass species, poor image contrast). 

Out of the 1727 images without seagrass, 1129 had simple substrate and 598 had complex substrate. 

Similar to Model #1, a random 531 simple substrate images were excluded and retained for further 

testing to unsure a balance dataset during training. This classifier can provide a potential reason for 

the absence of seagrass as well as highlighting potential shortfall in the seagrass detection from Model 

#1. In complex substrate habitats, seagrass could be present, however, percent cover is most likely to 

be low (<10%) and particularly difficult to detect by the model. Images predicted into this category 

can be later manually inspected to confirm the absence of seagrass. 

All three final datasets were split 60-20-20 into a training, validation and test set. 

2.3. Deep Neural Network (DNN) modelling 

2.3.1. Image classification workflow 
Our aim for this study was to develop a Detector that would be able to achieve three separate 

classification tasks: (1) detect the presence/absence of seagrass, (2) estimate the seagrass cover (low, 

medium or high), and (3) identify the level of complexity of the substrate (simple or complex). 

Separate deep–learning models were developed to execute each of these tasks independently which 

maximised model accuracy and reduced category imbalance (Figure 3). 

 
Figure 3. Diagram detailing the image classification workflow process of the Detector with the three 
deep–learning models involved  
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2.3.2. Model architecture 
The classification models were composed of a binary classification model for Model #1 and Model #3 

and multiclass classification for Model #2. The classification employed deep–learning and more 

specifically deep neural networks (DNNs). Training a neural network can be a protracted process and 

requires a large number of images to achieve satisfactory results. Transfer learning has been 

developed where an already successfully trained network such as VGG16 can be used as a feature 

extractor and coupled with a new classifier trained for the new specific task Tammina, 2019. Our 

network was composed of a VGG16 model pre-trained on the ImageNet classification tasks Zhang et 

al., 2015. Instead of the final dense layer from the original VGG16 model, we created our own custom 

classier composed of a sequence of two fully connected layers (with 512 nodes and ReLU Agarap, 2018 

activation), two consecutive dropout Srivastava et al., 2014 (probability of 0.05 and 0.5) to prevent 

overfitting and a final dense layer with one node for each of predicted class activated by either the 

Sigmoid or Softmax function (Figure 4). 

 

Figure 4. Convolution neural network architecture of: (a) Model #1, (b) Model #2 and (c) Model #3. 
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Contrary to other studies (Raine et al., 2020) we chose not to split our original images as it would have 

meant having to create new labels for thousands of sub-images. Instead, the input image size was 

increased. After multiple trials we found that optimal results were achieved for the input size of 

1024x1024 pixels. We also tried more complex networks such as Resnet50, Xception and EfficientNet 

but they did not perform nearly as well and were much slower to train. 

2.3.3. Model training 
The DNNs were all trained on batches of eight random images per training iteration. When the DNN 

has gone through as many iterations as needed to process the full training image set, this constitutes 

an epoch. Throughout the whole training process, the progress of the learning is monitored by 

evaluating the model performance on the validation image set. 

We started with an initial training phase where only the final classification layers (custom classifier 

part) were trainable and the rest of the VGG16 layers were frozen. During this phase the Adam 

optimizer Kingma and Ba, 2014 was used with an initial learning rate of 0.001. If the loss on the 

validation image set did not improve after 10 epochs the learning rate was reduced by half up to four 

times after which the training was stopped. That process lasted 60 to 68 epochs. A fine-tuning training 

phase followed, where the VGG16 layers were unfrozen and set as trainable. This was done over 100 

epochs and with the RMSprop optimizer Tieleman and Hinton, 2014 and a much slower learning rate 

of 0.00001. The fine-tuning is meant to ensure the feature extraction is optimised for our input size as 

well as increasing performance of the models.  

To further prevent overfitting and best capture, the potential illumination and turbidity variations of 

underwater images, colour-based data augmentation was applied where brightness (-70 to 70), 

contrast (0.1 to 0.3), blur (sigma 0 to 0.5) and the red channel (-50 to 50) were randomly altered at 

each training iteration.  

2.3.4. Model evaluation (testing) 
The training process stopped once all the DNNs have reached a plateau where further training did 

note further improve performances on the validation set. 

We then conducted final evaluation of the model performance on the test image set (20% of the total) 

where a detailed accuracy assessment was done. For Model #1 and Model #3, further testing was 

conducted by running the model on the remaining images not included in the training, validation and 

test sets. 
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3. Results 

3.1. Model #1 
Model #1 achieved 97.0% accuracy (Table 2) on the test image set (691). We had 3 false positive and 

18 false negative classifications (Figure 5, Table 3a). The false positives were all images from Low Isles 

and taken on SCUBA. We suspect that the presence of turf algae and the low image quality could be 

the source of the misclassification. The small number of false positives suggests the model was not 

overestimating seagrass presence. 

 

 

Figure 5. Examples of images misclassified by Model #1 with false positives on top row and false 
negative on the bottom row. 

 

Of the false negative images, 16 had a percent cover lower than 10% and in nine of these percent 

cover was lower than 5% (Figure 6). In addition, 14 of the false negative images had a complex 

substrate with seven having more than 15% algae cover. This was further confirmed by running the 

model on the remaining seagrass photos not included in the training, validation and test sets. The 

model failed to detect seagrass in 38 out of 1509 images, achieving 97.4% accuracy. A similar pattern 

was observed where 31 of the misclassified images had less than 10% seagrass cover and 33 had 

complex substrate (Figure 6). 
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Figure 6. Histogram of the distribution of the seagrass percent cover and substrate complexity 
present in the 56 images misclassified (false negative) in Model #1. 

 

3.2. Model #2 
Model #2 had an overall accuracy of 80.7% (Table 2) on the test image set (647). The highest accuracy 

was achieved for the medium cover class (84.3%), followed by the low cover class (78.5%) and the 

high cover class (75.9%). However, these differences in accuracies were marginal and most likely a 

consequence of the unbalanced nature of the cover classes image dataset (Figure 7, Table 3c). 

All the misclassified images of the low cover classes (45) were incorrectly predicted to be in the 

medium cover category. Misclassification occurred for images with percent cover between 7 and 9% 

(31) (Figure 8). Furthermore, 32 of which also had a complex substrate, further highlighting the 

difficulty categorising images close to the threshold of 10%, especially for complex substrates where 

algae for example could be biasing the predictions. 
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Figure 7. Examples of images misclassified by Model #2 from the low, medium and high cover 
categories. 
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Figure 8. Histogram of the distribution of the seagrass percent cover and substrate complexity 
present in the 45 misclassified images of the low cover category (false medium) by Model #2. 

 

There were 48 misclassified images of the medium cover classes, of which 31 were predicted as low 

cover and 17 as high cover. The false low cover images were mostly close to the 10% threshold with 

27 if these images being between 10 and 15% seagrass cover (Figure 9). Images dominated by smaller 

seagrass species with rounded and fernlike morphology were also a source of misclassification. The 

false high classifications were solely dominated by straplike species and 10 images had a seagrass 

cover between 20 and 30%. 

There were 32 misclassified images of the high cover class, which were all predicted as a medium 

cover. Similarly, to the previous classes, a vast majority of these were close to the adjacent cover 

category threshold with 28 of these images having less than 38% seagrass cover (Figure 10). Straplike 

morphology dominated in 27 of the misclassified images except for those with percent cover of more 

than 40% which were dominated by rounded and fernlike morphology.  

The type of substrate was not a significant driver of prediction errors for the medium and high cover 

class. 
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Figure 9. Histogram of the distribution of the seagrass percent cover and substrate complexity 
present in the 45 misclassified images of the medium cover category using Model #2). 

 

 

Figure 10. Histogram of the distribution of the seagrass percent cover and substrate complexity 
present in the 45 misclassified images of the medium cover category using Model #2). 
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3.3. Model #3 
Our subtidal substrate complexity classifier (Model #3) achieved an accuracy of 97.9% (Table 2) on the 

test image set (240) and on the simple substrate only images remaining (531). There were two images 

misclassified as complex and three images were misclassified as simple instead of complex out of the 

test image set (Figure 11, Table 3d). These images were also difficult to manually classify because they 

were mostly composed of a simple sandy substrate with some additional features such as algae or soft 

coral, or have poor visibility. 

There were 11 images misclassified as complex instead of simple out of the simple substrate images 

remaining. These had 7% algae cover on average and 10 had more than 3%. This may be a 

consequence of the arbitrary binary classification used during the labelling process. It is very difficult 

to establish a clear difference between a quadrat with a simple sandy substrate with some algae or 

other feature like coral and a complex substrate. These instances are uncommon within the dataset, 

with 82 images labelled as simple substrate and more than 3% algae cover and occurred mainly only 

at the Dunk Island and Low isles sites (36 and 30 images respectively). This could be easily refined 

further by increasing the image dataset and by setting clearer thresholds or rules to define the 

substrate complexity classes. 

 

Figure 11. Examples of images misclassified by Model #3 with false complex on top row and false 
simple on the bottom row. 

 

  



 

18 

4. Discussion 

4.1. Method performance and limitations 
The main goal of this research was to determine the potential for deep–learning models to detect the 

presence of seagrass within underwater photos. Seagrass was identified in images containing a mix of 

seagrass species, seagrass morphologies and from a range of sites with a very high level of accuracy 

(97%). This was achieved using a simple neural network architecture. The performance of Model #1 

was higher than previously published deep–learning seagrass detection models (Raine et al., 2020). 

However, a direct comparison between the accuracies is difficult due to differences in image dataset 

size and classifiers for seagrass morphology between studies. 

We found that most of the misclassification occurred for images with complex substrate especially 

those with high algae percent cover. This is typical for deep–learning classification models that are still 

lacking the ability to apply extreme generalization the way humans do (Chollet, 2017). Differentiating 

among well-defined objects is usually straight forward with numerous documented examples on 

image datasets such as ImageNet (Krizhevsky et al., 2017). The model outcomes for complex substrate, 

could possibly be improved by increasing the overall number of images, but also by having a balanced 

number of images with the same level of algae with and without seagrass. Indeed, deep–learning 

models are able to continue to “learn” with additional imagery. So as new images are being collected, 

our present models can be further trained which will lead to improved performance over time. 

We also demonstrated it was possible to categorise seagrass cover into three broad classes with an 

accuracy of 80.7%. The choice of category boundaries was crucial in the model performance. Most of 

the classification errors happened around these boundaries and resulted in an image being placed 

into the adjacent category, rather than for example two categories away (i.e. a high being classed as 

low or vice versa). This needs to be considered when applying the model. For instance, the medium 

seagrass cover category was defined as ≥10 <30% during the labelling process, however the percent 

cover range of the images predicted in that class ranged from 7 to 35%. 

Seagrass percent cover estimates can be difficult to assign for low densities. Except for a few 

structurally large species, individual seagrass leaves are very small and therefore may not be easy to 

identify. A study from Moniruzzaman et al. (2019) developed deep–learning models to detect single 

leaves of Halophila ovalis. This was effective for oblique close-up images with a sand background, but 

is likely to be less effective with nadir quadrat images as used in this study. Photoquadrats are used 

so that cover can be easily quantified in a standardised manner. Furthermore, it would require a 

significant effort to label a photoquadrat dataset where individual bounding boxes must be drawn for 

every single leaf in every image. 

An alternative method to estimate percent cover of benthic taxa (e.g. coral, algae, seagrass) and 

substrate (e.g. sand, rock) is using a point annotation system. This method has been successfully used 

for coral reefs and invertebrate communities (González-Rivero et al., 2016) and is publicly available 

through platforms such as CoralNet or ReefCloud. In seagrass habitats, the point annotation method 

is only able to detect seagrass when cover is above 25% (Kovacs et al., 2022). This is because the 

method relies on classifying an area (224x224 pixels) around the annotated point. The dimension of 

the annotation area is not visible through the labelling interface and the person conducting the 

labelling is expected to label only what is directly under the point. This approach works for well–

defined and larger objects like coral, however, it is not well adapted to scattered, low and sparse 

seagrass cover where there could be seagrass within the classifying area but not directly under the 

point, resulting in a high degree of misclassification. Furthermore, the labelling effort required to fully 
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label a single image with 10 to 30 points is significantly greater than conducting a single seagrass 

estimate for the entire image. 

While we acknowledge the potential limitations of our models, especially Model #2, we believe the 

preliminary results are very exciting and encouraging. We are hoping to further develop our method 

towards highly accurate automatic seagrass detection that is suited for operational applications in a 

vast number of locations. 

 

4.2. Operationalisation and Mainstreaming 
This study was undertaken to demonstrate the feasibility of a subtidal seagrass detection model as a 

step towards operationalisation and mainstreaming of big data acquisition and analysis (e.g. Dalby et 

al., 2021).  

Traditional direct field observations provide instantaneous data, but need to be performed or 

overseen by formally trained scientists, and the data requires time consuming transcription into a 

database. Images (e.g. photoquadrats), however, can be collected by a variety of participants such as 

environmental practitioners, Indigenous ranger groups or members of the public without a formal 

scientific background (i.e. citizen scientists), requiring less capacity and resources. For example, 

rangers from the Queensland Park and Wildlife Services (QPWS) conduct subtidal seagrass monitoring 

using drop cameras that is currently integrated into the Great Barrier Reef Marine Monitoring Program 

(McKenzie et al., 2021). Citizen scientists, QPWS Rangers and Indigenous rangers frequently access 

the Reef and seagrass habitats of northern Australia. Simplifying the methods and minimising the time 

required to capture data by using photoquadrats can vastly increase the volume, velocity, variety and 

geographic spread of image data collection. The models presented in this study facilitate the ability to 

mainstream data capture and increase the rate of image processing, enabling scientists to maximise 

Big Data analysis and reporting. With the addition of the deep–learning models, we can grow our 

capacity for image data handling. In parallel with the development of the models presented here we 

are also working on streamlining a higher efficiency image processing workflow. This includes handling 

either time-lapse or video (e.g. GoPro) input sources to generate deep–learning ready standardized 

quadrat images. 

The operational applications for the subtidal seagrass detector are wide-ranging, including mapping 

and monitoring of the vast and remote northern Australian seagrass habitats. Image collection 

combined with a geotagging/geolocation, will enable the production of spatially explicit maps of 

subtidal areas. Our models are most adapted to this application as maps tends to only need simple 

information input like seagrass presence/absence. However, we have also shown possibilities for 

monitoring with the ability to detect broad seagrass cover categories which would enable temporal 

changes in seagrass abundance to be assessed. 

 

4.3. Future directions 
While the findings in this study are encouraging, we very much intend to further refine and improve 

those models and the associated data processing workflow over time. One of the main advantages of 

using Deep Neural Networks is their capacity to incrementally improve when additional training data 

is provided. Therefore, as more and more diverse images are supplied it will help us build more robust 

models and give greater confidence in the predictions. Our models are currently limited to be used on 

subtidal nadir photoquadrats captured using a drop camera. However, with the increasing popularity 
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of Autonomous Underwater Vehicles (AUVs), our DNNs would need to be trained to accept more 

versatile image inputs (e.g. oblique and without guiding bounds). 

The other main area for future improvement is data handling. Our vision is to create a web portal 

where participants can upload images or videos and are able to visualise the raw outputs as predicted 

seagrass distribution maps. 
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5. Appendix 
 

Table 1. Details about location, NRM region, source and number of images used in study. TSSMP= 
Torres Strait Seagrass Monitoring Program, QPWS = Queensland Parks & Wildlife Service, MMP = 
Great Barrier Reef Marine Monitoring Program, (MMP) = contributes to MMP. 

Location 
Natural Resource 
Management Region 

Habitat Image source Number of images 

Orman Rf Torres Strait reef TSSMP 649 
Dungeness Is. Torres Strait reef TSSMP 333 
Dugong Sanctuary Torres Strait reef TSSMP 306 
Margaret Bay Cape York coastal QPWS (MMP) 20 
Lloyd Bay Cape York coastal QPWS (MMP) 108 
Flinders Is. Cape York reef QPWS (MMP) 98 
Bathurst Bay Cape York reef QPWS (MMP) 56 
Low Isles Wet Tropics reef MMP 631 
Green Is. Wet Tropics reef MMP 912 
Dunk Island Wet Tropics reef MMP 1044 
Missionary Bay Wet Tropics coastal QPWS (MMP) 42 
Magnetic Is. Burdekin reef MMP 710 
Cid Harbour Mackay Whitsunday reef QPWS (MMP) 14 
Tongue Bay Mackay Whitsunday reef QPWS (MMP) 119 
White Heaven Beach Mackay Whitsunday reef QPWS (MMP) 20 
Lindeman Is. Mackay Whitsunday reef MMP 485 
Newry Bay Mackay Whitsunday coastal QPWS (MMP) 96 
Hervey Bay Burnett Mary coastal Seagrass-Watch 151 

 

 

Table 2. Deep Neural Network model summary outputs. 

Model / dataset Class Precision Recall F1-score Images Accuracy 

Model 1 – Test set Seagrass absent 0.95 0.99 0.97 346 
0.97 

Seagrass present  0.99 0.95 0.97 345 
Model 1 – image 
remaining set 
 

Seagrass absent NA NA NA NA 
0.97 

Seagrass present  1 0.97 0.99 1509 
Model 2 – Test set Low cover 0.84 0.78 0.81 209 

0.81 Medium cover 0.77 0.84 0.8 305 
High cover 0.86 0.76 0.8 133 

Model 3 – Test set Simple 0.98 0.98 0.98 120 
0.98 

Complex 0.98 0.97 0.98 120 
Model 3 – image 
remaining set 
 

simple 1 0.98 0.99 531 
0.98 

complex NA NA NA NA 
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Table 3. Deep Neural Network model confusion matrices. 

a. Model #1 – Test set 

  Predicted 

A
ct

u
al

  Seagrass absent Seagrass present 
Seagrass absent 343 3 

Seagrass present  18 327 

b. Model #1 – images remaining set 

  Predicted 

A
ct

u
al

  Seagrass absent Seagrass present 
Seagrass absent 0 0 

Seagrass present  38 1471 

c. Model #2 – Test set 

  Predicted 

A
ct

u
al

 

 Low cover Medium cover High cover 
Low cover 164 45 0 

Medium cover 31 257 17 

High cover 0 32 101 

d. Model #3 – Test set 

  Predicted 

A
ct

u
al

  Simple Complex 

Simple 118 2 

Complex 3 117 

e. Model #3 – images remaining set 

  Predicted 

A
ct

u
al

  Simple Complex 
Simple 520 11 

Complex 0 0 
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